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Abstract

A tree is called a k-ended tree if it has at most & leaves, where a leaf
is a vertex of degree one. We prove the following theorem. Let k > 2 be
an integer, and let G be a connected bipartite graph with bipartition
(A, B) such that |A| < |B| < |A|+k—1. If02(G) > (|G|—k+2)/2, then
G has a spanning k-ended tree, where o2(G) denotes the minimum
degree sum of two non-adjacent vertices of G. Moreover, the condition
on o9(@G) is sharp. It was shown by Las Vergnas, and Broersma and
Tuinstra, independently that if a graph H satisfies oo(H) > |H|—k+1
then H has a spanning k-ended tree. Thus our theorem shows that
the condition becomes much weaker if a graph is bipartite.

Keywords: spanning tree, spanning k-ended tree, spanning tree with
at most k leaves

1 Introduction

In this paper, we consider finite simple graphs, which have neither loops nor
multiple edges. Let G' be a graph with vertex set V(G) and edge set E(G).
We write |G| for the order of G, that is, |G| = |V(G)|. For a vertex v of G,
let Ng(v) denote the neighborhood of v in G, and denote the degree of v in



G by degq(v), in particular, deg(v) = |Ng(v)|. For two vertices x and y of
G, an edge joining them is denoted by xy or yz. A vertex of a tree is called
a leaf if its degree is one. For an integer k£ > 2, a tree is called a k-ended tree
if it has at most k leaves.

The invariant o9(G) is defined to be the minimum degree sum of two
non-adjacent vertices of G, i.e.,

02(G) = my{gEH(lG){degc(fv) + degq(y)}-

By using 09(G), Ore obtained the following famous theorem on Hamilton
path. Notice that a Hamilton path is a spanning 2-ended tree.

Theorem 1 (Ore [7]). Let G be a connected graph. If oo(G) > |G| —1, then
G has a Hamilton path.

The following theorem gives a similar sufficient condition for a graph to
have a spanning k-ended tree.

Theorem 2 (Las Vergnas [5], Broersma and Tuinstra [2]). Let k > 2 be an
integer, and let G be a connected graph. If 09(G) > |G| — k + 1, then G has
a spanning k-ended tree.

Our main result of this paper is the following theorem, which shows that
the lower bound on 09(G) in Theorem 2 can be much weakened for bipartite
graphs.

Theorem 3. Let k > 2 be an integer, and let G be a connected bipartite
graph with bipartition (A, B) such that |A| < |B| < |A|+k —1. If

Gl =k

o2(G) > 5

+1, (1)

then G has a spanning k-ended tree.

Note that the condition |B| < |A| + k — 1 is necessary for the bipartite
graph G to have a spanning k-ended tree. Moreover, the degree sum condition
is sharp in the sense that we cannot replace the lower bound on o3(G) by
(|G| — k + 1)/2. We show this sharpness in the last section.

On the other hand, one might conjecture that o9(G) can be replaced by

011(G) = xy{gg?(;){dega(fr) +degq(y) |z € A, y € B},

In fact, we obtain the following theorem.



Theorem 4. Let k > 2 be an integer, and let G be a connected bipartite
graph with bipartition (A, B) such that |A| < |B| < |A|+k—1. If

011(G) = |B], (2)
then G has a spanning k-ended tree.

The above Theorem 4 is a generalization of the following Theorem 5 on
Hamilton path.

Theorem 5 (Moon and Moser [4]). Let G be a connected bipartite graph
with bipartition (A, B) such that |A| < |B| <|A|+ 1. If 011(G) > |B|, then
G has a Hamilton path.

Many results on spanning k-ended trees related to our theorems can be
found in the book [1] and papers [3], [6] and so on. In particular, a survey
article [8] contains many current results on spanning trees including spanning
k-ended trees.

2 Proof of Theorem 3

We begin with some notation. A set X of vertices of G is called an inde-
pendent set if no two vertices of X are adjacent in GG. Let T be a tree. We
denote the set of leaves of T by Leaf(T). For two vertices u and v of T', there
exists a unique path connecting u and v in 7', and it is denoted by Pr(u,v).
We need the next lemma.

Lemma 2.1. Let T be a tree whose vertices are colored with red and blue
so that no two adjacent vertices have the same color. If all the leaves of T
are red, then the number of red vertices of T is greater than or equal to the
number of blue vertices of T.

Proof. We prove the lemma by induction on |T'|. It is easy to see that the
lemma holds for small trees. Let T be a tree. We remove all the leaves from
T, and denote the resulting tree by 7. Again remove all the leaves of T from
T}, and denote the resulting tree by T5. Since every leaf of T} is adjacent to
at least one leaf of T, the number of leaves of T is greater than or equal to
the number of leaves of T}. It is easy to see that all the leaves of T5 are red.
Hence by induction hypothesis, the number of red vertices of 75 is at least
the number of blue vertices of T5. Therefore the lemma holds.

We now prove Theorem 3.



Proof of Theorem 3. Let G be a connected bipartite graph with bipartition
(A, B) that satisfies all the conditions in Theorem 3. Suppose that G has no
spanning k-ended tree. We choose a spanning tree T of G so that

(T1) the number of leaves of T' is as small as possible;

(T2) the length of a longest path in T is as large as possible subject to (T1).

Then the number of leaves of T'is |Leaf(T)| = ¢ > k+1 > 3 since G has no
spanning k-ended tree. In particular, 7" is not a Hamilton path and has at
least one vertex of degree at least three.

For convenience, we call a vertex of B a red vertex and a vertex of A a
blue vertex. We shall consider two cases.

Case 1. T contains both a red leaf and a blue leaf.

Let v be a red leaf and w a blue leaf of T. It is easy to see that no two
leaves of T' are adjacent in (G since otherwise we can get a spanning tree
having fewer leaves than T'. For a vertex x € V(T') — {v, w}, z, denotes the
vertex which is adjacent to x and lies on the path Pr(z,v), and x,, is defined
analogously. In other words, x, (x,) is the parent of x in a rooted tree T'
with root v (w), respectively. So if  does not lie on Pr(v,w), then x, = z,,
and if z lies on Pr(v, w), then z, # x,,.

Suppose that v is adjacent to a vertex x in G but not in 7', and that w is
adjacent to x, in G. Then x is not a leaf of ', and 77 = T — xx, + vr + wz,
contains a unique cycle, which has an edge ¢; incident with a vertex of degree
at least three in T7. Then 7] — e; is a spanning tree of G with ¢ — 1 leaves.
This contradicts the choice (T1) of 7. Hence w is not adjacent to z, in G.
If v is adjacent to a vertex x in 7', then z, = v and so w is not adjacent to
T, in G.

Moreover, if v is adjacent to two distinct vertices y and z in GG such that
Yy = 2y, then y is not a leaf of T and 7, has degree at lest three in 7', and
thus T'+ vy — yy, is a spanning tree of G with ¢ — 1 leaves, which contradicts
the choice (T1) of T. Hence, if v is adjacent to two distinct vertices y and z
in G, then y, # z,.

By the symmetry of v and w, we obtain the following statements:

(i) If v is adjacent to x in G, then w is not adjacent to x, in G.
(ii) y, # 2, for all two distinct y, z € Ng(v).

(iii) If w is adjacent to = in G, then v is not adjacent to z,, in G.
(iv) yw # 24 for all two distinct y, 2 € Ng(w).

Therefore the following four vertex sets are pairwise disjoint since Ng(v)
and Ng(w) consist of blue vertices and red vertices, respectively.

Ne(), {x, : z € Ng(v)}, Ng(w), {zy: 2 € Ng(w)}.

4



It is clear that Leaf(T)—{v,w} is disjoint from the above four subsets. Thus

|G| = [N (v)| + [{zy : 2 € No(v)} + [Na(w)| + [{zw - © € Na(w)}]
+|Leaf(T) — {v, w}]
= 2degq(v) + 2deggy(w) + ¢ — 2
> 205(G) +k—1.

This contradicts the assumption (1), and hence this case is proved.
Case 2. All the leaves of T' have the same color.

If |A| = | B, then we may assume that all the leaves are red by symmetry
of A and B. If |A| < |B], then all the leaves are red by Lemma 2.1.

Let Pr(v,w) be a longest path in 7', which connects two red leaves v and
w. First suppose that T — V(Pr(v,w)) consists of only isolated vertices. In
other words, assume that every vertex of T'—V (Pr(v,w)) is a leaf of T'. Since
all the leaves of 1" are red, the number of red vertices of T" equals the number
of leaves in Leaf(T) — {v,w} plus the number of red vertices in Pr(v,w).
Since ¢ > k + 1, we have
Bl=(—2+ |PT(U,;U)| +1

s Pl =1

2

=k +|A|

This contradicts the assumption that |B| < |A| + &k — 1.

Hence T'— V(Pr(v,w)) contains a path of order at least two. We denote
a path including such a path and connecting to Pr(v,w) by Q(s,t), where s
is a vertex on Pr(v,w) and ¢ is a leaf of . So |Q(s,t)| = |[V(Q(s,1))] > 3
and V(Q(s,t)) NV (Pr(v,w)) = {s}.

Suppose that v is adjacent to a vertex x € V(T) — V(Pr(v,w)) in G.
Then T — zx, + vr is a spanning tree that has at most ¢ leaves and contains
a longer path than Pr(v,w). This contradicts the choice (T2) of T. Hence
N¢(v) CV(Pr(v,w)) — {v,w}. Similarly Ng(w) C V(Pr(v,w)) — {v,w}.

Assume that v is adjacent to a vertex x of Pr(v,w) — {v,w} in G but
not in 7. Then z is a blue vertex. Let z* denote the vertex of Pr(v,w) such
that the distance between x and x* is two and z* is closer to v than z. In
brief, z* is the next blue vertex of x on Pr(v,w) closer to v. If x,, which
lies between x and z*, is s, then T — zx, + vx is a spanning tree with ¢ — 1
leaves, a contradiction. Thus z, # s.

Assume that w is adjacent to z* in G. If v = s, then T} =T +wz* — zx,
is a spanning tree of G that has at most ¢ leaves and includes a longer
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path Pr, (t,v) than Pr(v,w), a contradiction. Similarly, we can derive a
contradiction in the case z* = s. If s & {x, x,, x*}, then Ty = T+ vx + wr* —
XX, — §Sy 1S a spanning tree of G that has at most ¢ leaves and includes a
longer path Pr, (¢, s,,) than Pr(v, w), a contradiction. Hence w is not adjacent
to z* in G.

Therefore, we obtain

02(G) < degg(v) + degg(w)
< |Ng(v)| + |{the blue vertices on Pr(v,w)}

—{2":x € Nopm)(v)}]
= |{the blue vertices on Pr(v,w)}| + 1

_ A=t
<UAZEED Ly Gy Q012 9)
< W% (by £ > k+1)
This is a final contradiction. Consequently the theorem is proved. O

3 Proof of Theorem 4

The proof of Theorem 4 is quite similar to that of Theorem 3.

Let G be a connected bipartite graph with bipartition (A, B) which sat-
isfies all the conditions in Theorem 4. For convenience, we call a vertex of B
a red vertex and a vertex of A a blue vertex.

Suppose that G' has no spanning k-ended tree. We choose a spanning tree
T of G so that

(T1) the number of leaves of T is as small as possible;

(T2) the length of a longest path in T is as large as possible subject to (T1).

Then the number of leaves of T is |Leaf(T)| = ¢ > k + 1 since G has no
spanning k-ended tree. We shall consider two cases.

Case 1. T contains both a red leaf and a blue leaf.

Let v be a red leaf of T and w a blue leaf of T'. By the same argument of
Theorem 3, we obtain |G| > 2deg,(v) +2deg,(w)+0—2 > 20,1 (G)+k—1,
and thus o,1(G) < (|G| — k +1)/2. On the other hand, by the condition of
Theorem 4 and by |G| = |A| + |B| < 2|B|, we have |G|/2 < |B| < 01,(G).
This contradicts the above inequality, and hence this case is proved.
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Case 2. All the leaves of T have the same color.

By the same argument in Case 2 of the proof of Theorem 3, we may
assume that all leaves of T" are red. Let Pr(v,w) be a longest path in 7.
By the same argument as in Case 2 of Theorem 3, we can show that T —
V(Pr(v,w)) contains a path of length at least one. We take a path Q(s,1)
as in the proof of Theorem 3, where s is a vertex on Pr(v,w), t is a leaf of
T and [Q(s, 1) = [V(Q(s,1))| = 3.

Let u denote the vertex adjacent to ¢ in 7. Then w is a blue vertex
of Q(s,t) since t is red. It follows from the choice (T2) of T that u is
adjacent to neither v nor w in GG. Moreover, we can similarly show that
Ne(v) CV(Pr(v,w)) — {v,w} as in the proof of Theorem 3.

Assume that v is adjacent to a vertex x of Pr(v,w)—{v,w} in G— E(T),
and that v is adjacent to a vertex z, in G, where z, is defined in the proof
of Theorem 3. Then T + vx 4+ ux, — xx, — rs is a spanning tree that has
at most ¢ leaves and contains a longer path than Pr(v,w). This contradicts
(T2). Hence u is not adjacent to x, in G. For a red vertex v and a blue
vertex u, we obtain

01,1(G) < degg(v) + degq(u)
< |Ng(v)| + |{the red vertices in G — V(P(v,w))}|
+ |{the red vertices in Pr(v, w)} — {v,w} — {z, : © € Ng_pg)(v)}|
< |{the red vertices in V(G) — {v,w}}| +1
=|B| - 1.

This is a final contradiction. Consequently the theorem is proved. O

4 Sharpness of Theorem 3

Let m > 2 be an integer and let a and b be two non-negative integers such
that a + b = k — 1. Construct the bipartite graph G with partite sets A
and B as follows: Let A = A; U Ay and B = By U By, where |A;| = m + a,
|As| = m, |Bi| = m and |Bs| = m + b. Join each vertex of A;(resp. As) to
every vertex of Bj(resp. Bs), and join a vertex x of A, to a vertex y of Bj.
The resulting graph G is shown in Figure 1.

Then G satisfies |G| = 4m + a + b and 03(G) = 2m = (|G| — (a +
b))/2 = (|G| — k + 1)/2. But G has no spanning k-ended tree. To show
this, we assume that G has a spanning k-ended tree 7. Since T has at
most k leaves and a + b = k — 1, the number of the edges in 7" is at least
2(|A1] + |Ba|) =k + {2y} = 22m +a+b) —k+1 =4m + a+b. This



4, (|A1|=m+a) A4, (‘A2|=m)

B, (|Bl|=m) B, (|B2|=m+b)

Figure 1: A bipartite graph G with bipartition (A; U Ay, By U By)

contradicts |E(T)| = |G| —1 = 4m + a + b — 1. Therefore the lower bound
on 03(G) is sharp.
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